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Abstract. We numerically investigate how to enhance synchronizability of coupled identical oscillators in
complex networks with research focus on the roles of the high level of clustering for a given heterogeneity
in the degree distribution. By using the edge-exchange method with the fixed degree sequence, we first
directly maximize synchronizability measured by the eigenratio of the coupling matrix, through the use
of the so-called memory tabu search algorithm developed in applied mathematics. The resulting optimal
network, which turns out to be weakly disassortative, is observed to exhibit a small modularity. More
importantly, it is clearly revealed that the optimally synchronizable network for a given degree sequence
shows a very low level of clustering, containing much fewer small-size loops than the original network. We
then use the clustering coefficient as an object function to be reduced during the edge exchanges, and find
it a very efficient way to enhance synchronizability. We thus conclude that under the condition of a given
degree heterogeneity, the clustering plays a very important role in the network synchronization.

PACS. 89.75.-k Complex systems – 05.45.-a Nonlinear dynamics and chaos – 05.45.Xt Synchronization;
coupled oscillators

1 Introduction

Many real networked systems often exhibit common fea-
tures such as the small-world effect [1] and scale-free prop-
erty [2]. Network structure has a significant impact on
the dynamical processes taking place on it, and particu-
larly, the synchronization of individual elements coupled
through the network structure has drawn much inter-
est [3]. It has been shown that the ability of a network
to synchronize is generally improved in both small-world
networks and scale-free networks as compared to regular
graphs [4–6]. However, there has been still on-going dis-
cussion on the questions of which (and how) structural
property greatly affects synchronizability.

Some previous works have shown that the character-
istic path length � is one of the key factors: The smaller
�, the better synchronizability [7–9]. On the other hand,
intensive research focus has been put on the role of the
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degree heterogeneity on synchronizability: The more ho-
mogeneous a network is (although it may have a longer
�), the better synchronizability can emerge [10–13]. Al-
though the heterogeneity of networks can also be de-
fined in terms of the spread of coupling strengths [11],
we here use the term “heterogeneity” as a measure of
how broad the degree distribution is. In addition, some
recent works have demonstrated that disassortative net-
works synchronize better than assortative ones [14], and
the increasing clustering hinders the global synchroniza-
tion to emerge [15,16]. The majority of previous works
have been based on the simulation results allowing tuning
only one or a few topological measures (see also some re-
cently proposed analytical approaches [17–19]). If all the
topological properties can simultaneously vary, what will
happen? Should a network with better synchronizability
have some particular properties? Besides the simulated
and analytical approaches, a potential way to investigate
the relation between structural and dynamical properties
is to track the optimization process, which will lead to
some networks with specific dynamical characters [20–22].
Concerning with network synchronizability, a pioneer-
ing work [23], based on a modified simulated annealing
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algorithm, suggested that the network having the best
synchronizability should be extremely homogeneous. In
Donetti-Hurtado-Muñoz approach [23], the rewiring oper-
ation is used, thus for different initial configurations, the
optimization process will lead to the same optimal result,
named Entangled Network.

In the present paper, we aim to optimize the synchro-
nizability of the network with the degree of each node
preserved, which can be realized by edge-exchange opera-
tion [24–26]. After the achievement of the optimally syn-
chronizable network structure for a given degree hetero-
geneity. We also simply minimize the clustering coefficient
of the network, finding that both procedures yield the al-
most the same level of synchronizability. From these find-
ings, we suggest that the clustering coefficient is the one
of the most practically convenient properties to influence
network synchronizability for a given degree heterogene-
ity.

This article is organized as follows: The concept of syn-
chronizability and the optimization algorithm are briefly
introduced in Sections 2 and 3, respectively. In Section 4,
we provide main simulation results from the optimization
of synchronizability for both homogeneous and heteroge-
neous networks, whereas Section 5 is devoted to the results
from the optimization of the clustering property. Finally
Section 6 is for the summary of the present work.

2 Synchronizability

Consider a network of N oscillators described by the equa-
tions of motion

ẋi = F (xi) − σ

N∑

j=1

LijH(xj), (1)

where ẋi = F (xi) governs the dynamics of individual os-
cillator without couplings, H(x) describes the interaction
function between two oscillators, and σ is the coupling
strength. The N × N Laplacian matrix L has elements
given by

Lij =

⎧
⎨

⎩

ki, for i = j,
−1, for j ∈ Λi,

0, otherwise,
(2)

where Λi denotes the set of i’s neighbors and ki is the
degree of the vertex i. The Laplacian matrix plays a very
important role in the study of the synchronization of iden-
tical oscillators. All the eigenvalues of the Laplacian ma-
trix L are known to be real positive and the smallest
eigenvalue λ1 is zero due to the vanishing row sum of
L, i.e., 0 = λ1 ≤ λ2 . . . ≤ λN . Network synchronizabil-
ity is well quantified by the ratio R of the the largest and
the smallest nonzero eigenvalues, i.e., R ≡ λN/λ2 [27,28],
and the network is synchronizable if R < β with β being
a some constant depending on F and H . Consequently,
the smaller the eigenratio R, the easier it is to synchro-
nize the oscillators, and vice versa. This approach based
on the linear stability of perfectly synchronized oscillators

v1

v2

v1

v2 v4

v3v3

v4

Fig. 1. The edge-exchange operation during optimization pro-
cedure. Two edges are chosen randomly and the two vertices
at the ends of edges are exchanged with each other. Multiple
edges and self-edges are prohibited.

is very useful in a practical point of view, since R de-
pends only on the topology of interactions among oscilla-
tors. Having reduced the problem of optimizing network
synchronizability to the one of finding the smallest eigen-
ratio R, we below present our numerical method to attain
the best possible synchronizability for a network with a
given degree sequence.

3 Algorithm: Edge exchange and memory
tabu search

As shown in Figure 1, the procedure of the edge-exchange
operation in an undirected network goes as follows: (i)
Randomly pick two existing edges e1 = (v1, v2) and e2 =
(v3, v4), with all four vertices (v1, v2, v3, v4) being differ-
ent. (ii) Exchange these two edges to obtain e′1 = (v1, v4)
and e′2 = (v2, v3). We take the eigenratio R as the quan-
tity to minimize, and apply the heuristic algorithm, called
memory tabu search (MTS), popularly used in the area of
applied mathematics and computational science [29], as
follows:

1. At the initial stage at time k = 0, we generate the
so-called tabu list Tk=0 = {G(1)

0 , G
(2)
0 , · · · , G

(n)
0 } com-

posed of n graphs, where the subscript ‘0’ refers the
present time (k = 0), and each element in T0 is a graph
of the size N randomly generated for a given degree
distribution. We compute eigenratios for all graphs in
the tabu list and pick the graph G

(m)
k (m ∈ [1, n])

which has the lowest eigenratio R
(m)
k . We also set

G∗ = G
(m)
k and R∗ = R

(m)
k to store the graph with

the lowest eigenratio found so far. Accordingly, one
may regard G

(m)
k as the locally optimal graph within

Tk, and G∗ is the globally optimal one found so far.
2. From G

(m)
k , the locally optimal graph for the given

tabu list at time k, obtain the trial graph G′ by using
the edge exchange method shown in Figure 1 for two
randomly selected edges of G

(m)
k , and compute R′ =

R(G′). If the trial graph has a better synchronizability
than G

(m)
k , i.e., if R′ ≤ R

(m)
k , we always accept the try

and update the tabu list by inserting G′ to the list.
Even when the inequality is not satisfied, or the trial
graph is not better than G

(m)
k , we accept the try if

|R′−R
(j)
k |/R′ < δj (j = 1, 2, · · · , n), with δj a random
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number uniformly distributed in [0.50,0.75] (Different
choice of δj does not make much difference). If the trial
graph is rejected, we do not insert G′ into the tabu list.
We keep the size of the tabu list fixed, and thus when
a graph is newly inserted, we apply first-in-first-out
method, and remove the graph which entered the list
at the earliest time. Update G∗ and R∗ if newly found
graph has the lowest eigenratio. Increase the time k
and repeat the procedure.

In the viewpoint of statistical mechanics, the above de-
scribed MTS method is very similar to the Monte-Carlo
(MC) algorithm. However, the use of the list to keep n
recently found local optima presumably make the opti-
mization search algorithm quite efficient, since in the stan-
dard MC method, we only keep the last configuration. The
probabilistic acceptance through the use of δ, although
heuristic, is also similar to the MC method at finite tem-
peratures.

4 Results: Optimizing synchronizability

As initial network structures to begin with, we take
the scale-free network proposed by Barabási and Albert
(BA) [2], the scale-free network with tunable clustering
by Holme and Kim (HK) [30], the small-world network by
Watts and Strogatz (WS) [1], the Erdös and Rényi (ER)
random network [31], and the regular network. It is to be
noted that the former two, BA and HK, in the above list
have heterogeneous degree distributions, while the latter
three have homogeneous ones. We find that the simulation
results for the ER network and the regular network are in
accord with the main conclusions (see below) drawn from
the other three networks, and henceforth present only re-
sults for the WS, the BA, and the HK networks.

4.1 Watts-Strogatz network

We first investigate the optimization of synchronizability
for the WS network as an initial graph. Figure 2 reports
the eigenratio R versus the iteration step obtained for
the WS network at the rewiring probability p = 0.1 (see
Ref. [1] for details). One can see that the optimization
method of the MTS works efficiently and the eigenratio
is reduced dramatically. In Figure 3, we plot topological
measures such as the characteristic path length �, the clus-
tering coefficient C [1], the assortativity r [32], and the
modularity M defined as [33,34]

M ≡ 1
N(N − 1)

N∑

i=1

∑

j �=i

Sij , (3)

where Sij is the number of common neighbors of nodes
i and j divided by their total number of neighbors. It is
clearly seen that the optimization of synchronizability is
accompanied by the changes of the structural and topo-
logical network properties: the characteristic path length
becomes shorter, the assortativity changes from positive to

Fig. 2. The eigenratio R for the WS network of the size N =
400 with the average degree 〈k〉 = 6 at the rewiring probability
p = 0.1 is shown to decrease significantly as the optimization
procedure in Section 3 is repeated. Only the iteration step at
which R is reduced are recorded and used for the horizontal
axis.

Fig. 3. During the MTS optimization of synchronizability for
the WS network (see Fig. 2), (a) the characteristic path length
�, (b) the average clustering coefficient C, (c) the modularity
M , and (d) the assortativity r are measured.

negative, indicating that degrees of neighbors become, al-
though weak, negatively correlated. Furthermore, the clus-
tering coefficient is reduced monotonically, approaching
zero. The lower degree of clustering and disassortativity in
the optimally synchronizable networks are consistent with
existing studies [14–16]. More interestingly, the modular-
ity also decreases, in accord with a recent work [35], which
implies that a network with strong modular structures can
be more difficult to synchronize.

It has been found that many biological and techno-
logical networks contain motifs, that is, some specific
subgraphs appearing much more frequently than that
observed in random graphs with the same degree se-
quence [36,37]. Loop is one of the simplest but most
significant subgraphs, for it accounts for the multiplic-
ity of paths between any two nodes [38]. In Figure 4, we
show, via the measurements of the numbers of loops of the
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Fig. 4. (Color online) Number of h-loops, Nh, in the network
vs. iteration steps of the MTS optimization of synchronizabil-
ity. The value of Nh in step zero corresponds to the case of
initial network, which is a WS network with N = 400, 〈k〉 = 6
and p = 0.1.

Fig. 5. (Color online) Number of h-loops, Nh(N), vs. N in WS
networks (WS, black squares) and the corresponding optimal
networks obtained from the MTS optimization of synchroniz-
ability (OPT, red circles), respectively. The network sizes from
N = 150 up to N = 550 are used. In all those simulations,
the rewiring probability and average degree are p = 0.1 and
〈k〉 = 6. The three panels from left to right are for (a) h = 3,
(b) h = 4, and (c) h = 5, respectively.

sizes 3, 4, and 5, the change of the loop structure during
the optimization process. Due to the practical limitation
on computational capability, we did not calculate loops
bigger than the size 5. One can observe that the number
of loops drops drastically during the optimization process,
which indicates that the dense loops may hinder the global
synchronization. As shown in Figure 5, in WS networks,
the number of loops increases linearly with the network
size. In contrast, the numbers of loops in the correspond-
ing optimal networks stay at almost the same levels, in-
dicating the vanishing densities of loops as N becomes
larger.

All these results indeed state that the optimal net-
works belong to a class of networks in which there are
few number of loops, different from the majority of real

Fig. 6. The eigenratio R vs. iteration steps of a BA network
with N = 400 and 〈k〉 = 6 for the MTS optimization of syn-
chronizability. Only the steps in which R being reduced are
recorded.

biological and technological networks. One of the possible
reasons for the discrepancy is that the optimally synchro-
nizable network structure may have other disadvantages,
such as the vulnerability to structural perturbations, the
increase of the cost to build networks [39], and so on.

4.2 Barabási-Albert network

As shown above, the MTS algorithm appears to be very
effective for homogeneous networks: The eigenratio of WS
networks is reduced by the factor about 0.85 in compari-
son to the original WS network (see Fig. 2). We next apply
the same MTS method for networks with heterogeneous
degree distributions, i.e., the BA scale-free networks. As
shown in Figure 6, our method also enhances the synchro-
nizability of the BA network, however, the enhancement is
not as big as for the WS network, only about 6% decrease
of R for the BA, while it was 85% for the WS networks.
Other structural properties (not shown here) such as the
characteristic path length, the clustering coefficient, the
modularity, and assortativity are found to show the same
decreasing behaviors as for the WS network in Figure 3.
However, the changes are significantly smaller than the
WS network since the initial BA network already has small
values for those quantities. We also measured the number
of loops of the sizes h = 3, 4, and 5 only to find small
differences between the original BA network and the op-
timized one.

The above findings made for the optimization of BA
networks imply that it is indeed difficult to enhance syn-
chronizability of the BA network. We next pursue the an-
swer to the question which structural characteristics of
the BA network led us to the difficulty in optimizing syn-
chronizability. Particularly, we check below whether or not
the heterogeneous degree distribution in the BA network,
which is one of the striking differences from the WS net-
work, is the cause of the inefficiency.
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Fig. 7. The eigenratio R vs. iteration steps of a HK network
with N = 400 and 〈k〉 = 6 during the MTS optimization of
synchronizability. Only the steps in which R being reduced are
recorded.

4.3 Holme-Kim network

We here use the Holme-Kim model [30] of a scale-free net-
work with the tunable clustering coefficient. We first gen-
erate the network with the heterogeneous power-law de-
gree distribution but with the clustering coefficient much
greater than the BA network. If the difficulty we faced
in the optimization for the BA network described above
is due to the heterogeneous degree distribution, one ex-
pects the same inefficiency also for the HK network. On
the other hand, if the low clustering coefficient in the BA
network is the origin, one can have different result for
the HK network, i.e., much greater enhancement of syn-
chronizability. Figure 7 displays R during the MTS opti-
mization procedure applied to the HK network of the size
N = 400 and 〈k〉 = 6. We tune the clustering coefficient of
the initial HK network to C ≈ 0.5. As the MTS optimiza-
tion of the eigenratio proceeds, it is clearly seen that one
can reduce R significantly from R ≈ 110 to 48, which cor-
responds to about 50% of decrease. We also measure the
clustering coefficient during the optimization (not shown)
and observe it decreases from C ≈ 0.5 for the initial HK
network to 0.05 monotonically. These observations imply
that the reason why it is so difficult to optimize the syn-
chronizability of the BA network is not actually due to
the heterogeneity of the degree distribution but due to
the very low level of the clustering: C is already too small
and it is difficult to reduce it further. Consequently, we
suggest that the optimization of the synchronizability of
complex networks is very closely related with the cluster-
ing property of the given network. It is noteworthy that
the value of R we achieve for the HK network is still much
bigger than the corresponding value in Figure 2, which in-
dicates that homogeneous network with lower clustering
is the most optimal network structure.

5 Results: Optimizing clustering property

Based on observations in Section 4 that the optimization
of synchronizability is closely related with the clustering

Fig. 8. (a) The clustering coefficient C and (b) the eigenratio
R from the MC optimization of the clustering coefficient are
shown as functions of the MC steps. The WS network of the
size N = 400 and 〈k〉 = 6 at p = 0.1 is used as the initial
network. [Compare with Figs. 3b and 2, respectively].

property of the original network, we in this section apply
an opposite way: Take the clustering coefficient, instead of
the eigenratio, as the quantity to minimize, and measure
R during the optimization of the clustering property. In
contrast, we in the preceding section measured C during
the optimization of R. The use of the clustering coefficient
as the object function to optimize also has a practical effi-
ciency since only the clustering coefficients of vertices re-
lated with the exchanged two edges need to be newly com-
puted, which takes only O(1) operations. In order to sim-
plify further, we adopt the frequently used Monte-Carlo
method at zero temperature: Define the energy as the to-
tal clustering coefficient, and use the standard Metropolis
algorithm at zero temperature with the edge exchange in
Figure 1 as the local MC try [25].

In Figure 8, we summarize our results obtained from
the MC optimization of the clustering coefficient for the
WS network as the initial network structure. The similar-
ities between Figures 8a and 3b, and between Figures 8b
and 2, respectively, are striking. This clearly indicates that
the clustering coefficient plays a very important role in the
synchronizability of networks: One can achieve the same
level of synchronizability either by directly optimizing syn-
chronizability or by optimizing the clustering coefficient;
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Fig. 9. The eigenratio R versus MC step for the HK network
as the initial structure. The simple MC method with C taken
as the energy function has been used.

the latter can be done much more efficiently than the for-
mer.

We then repeat the same MC optimization of the clus-
tering coefficient for the BA network and also for the HK
network. For the BA network (not shown here) we get re-
sults very similar to Figure 6, which is easily understood
since the original BA network has already very weak clus-
tering property and thus further optimization is almost
impossible. For the HK network, we present our MC opti-
mization result of the clustering in Figure 9. Again, we find
that one can achieve optimal synchronizability by mini-
mizing the clustering coefficient (compare with Fig. 7).

6 Conclusion and discussion

In summary, a heuristic algorithm, memory tabu search,
in combination of the edge-exchange method to keep the
degree of each vertex unchanged, has been used to opti-
mize network synchronizability. For the homogeneous and
heterogeneous networks, with and without a high level
of clustering, topological characters have been measured,
which suggests that a network with shorter average dis-
tance, lower clustering, negative degree-degree correlation
and weaker modular structure is easier to synchronize. In
addition, we investigated the change of loop structure in
the optimization process, and found that the number of
loops decreases as synchronizability is enhanced.

Since each node can only impact its neighbors [see
Eq. (1)], if there is one path of length l between node
i and j, then, along this path, it takes l steps transferring
the synchronization signal from i to j (or from j to i).
Therefore, if there are so many paths of different lengths
between nodes i and j, the synchronization signal of i at
a given time will arrive at j along different paths at differ-
ent times, which may result in a destructive interference
effect. It may be the reason why dense loops, including the
loop of the size three related with the clustering coefficient,
may hinder the global synchronization. An extreme case is
that for directed networks, the one with the highest syn-
chronizability (i.e. with eigenratio R being equal to 1) is a

tree structure without any loops [40]. Adding one loop of
length 2 [41], the eigenratio will be doubled [42,43]. How-
ever, one has to be cautious extending the conclusion in
reference [40] toward the case of the nonidentical oscilla-
tors, as pointed out in reference [44]. We believe this work
will be helpful for the in-depth understanding about the
role of loops in network synchronization.

Many previous works have focused on synchronization
in heterogeneous networks, especially in scale-free net-
works. A common cognition is that heterogeneity hinders
the global synchronization in general. In this work, we
have clearly shown that the clustering property also plays
an important role when the degree heterogeneity is given
and that, more importantly, one can achieve almost max-
imal synchronizability only by reducing the clustering co-
efficient. We believe that our finding is practically useful
since the clustering coefficient is a local quantity and thus
has a computational advantage to other global properties.
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